
Introduction to Compiler 

Construction



Objectives

• Know how to build a compiler for a (simplified) 
(programming) language

• Know how to use compiler construction tools, 
such as generators for scanners and parsers

• Be familiar with virtual machines, such as the 
JVM and Java bytecode

• Be able to write LL(1), LR(1), and LALR(1) 
grammars (for new languages)

• Be familiar with compiler analysis and 
optimization techniques

• … learn how to work on a larger software project!



Compilers and Interpreters

• “Compilation”

– Translation of a program written in a source 

language into a semantically equivalent 

program written in a target language
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Compilers and Interpreters 

(cont’d)

Interpreter

Source

Program

Input

Output

Error messages

• “Interpretation”

– Performing the operations implied by the 

source program



The Analysis-Synthesis Model of 

Compilation

• There are two parts to compilation:

– Analysis determines the operations implied by 

the source program which are recorded in a tree 

structure

– Synthesis takes the tree structure and translates 

the operations therein into the target program



Other Tools that Use the 

Analysis-Synthesis Model

• Editors (syntax highlighting)

• Pretty printers (e.g. doxygen)

• Static checkers (e.g. lint and splint)

• Interpreters

• Text formatters (e.g. TeX and LaTeX)

• Silicon compilers (e.g. VHDL)

• Query interpreters/compilers (Databases)



Preprocessors, Compilers, 

Assemblers, and Linkers
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Try for example:
gcc -v myprog.c



The Phases of a Compiler
Phase Output Sample

Programmer Source string A=B+C;

Scanner (performs lexical 
analysis)

Token string ‘A’, ‘=’, ‘B’, ‘+’, ‘C’, ‘;’

And symbol table for identifiers

Parser (performs syntax analysis
based on the grammar of the 

programming language)

Parse tree or abstract syntax tree ;
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Semantic analyzer (type 

checking,  etc)

Parse tree or abstract syntax tree

Intermediate code generator Three-address code, quads, or 

RTL

int2fp B          t1

+      t1    C    t2

:=     t2         A

Optimizer Three-address code, quads, or 

RTL

int2fp B          t1

+      t1   #2.3  A

Code generator Assembly code MOVF  #2.3,r1

ADDF2 r1,r2

MOVF  r2,A

Peephole optimizer Assembly code ADDF2 #2.3,r2

MOVF  r2,A



The Grouping of Phases

• Compiler front and back ends:

– Analysis (machine independent front end)

– Synthesis (machine dependent back end)

• Passes

– A collection of phases may be repeated only once 
(single pass) or multiple times (multi pass)

– Single pass: usually requires everything to be defined 
before being used in source program

– Multi pass: compiler may have to keep entire program 
representation in memory



Compiler-Construction Tools

• Software development tools are available to 

implement one or more compiler phases

– Scanner generators

– Parser generators

– Syntax-directed translation engines

– Automatic code generators

– Data-flow engines



Outline

• Ch. 1:  Introduction

• Ch. 2:  A simple One-Pass Compiler for the JVM

• Ch. 3:  Lexical Analysis and Lex/Flex

• Ch. 4:  Syntax Analysis and Yacc/Bison

• Ch. 5:  Syntax-Directed Translation

• Ch. 6:  Type Checking

• Ch. 7:  Run-Time Environments

• Ch. 8:  Intermediate Code Generation

• Ch. 9:  Code Generation

• Ch.10: Code Optimization


