
Introduction to Compiler

Construction

Objectives

• Know how to build a compiler for a (simplified)
(programming) language

• Know how to use compiler construction tools,
such as generators for scanners and parsers

• Be familiar with virtual machines, such as the
JVM and Java bytecode

• Be able to write LL(1), LR(1), and LALR(1)
grammars (for new languages)

• Be familiar with compiler analysis and
optimization techniques

• … learn how to work on a larger software project!

Compilers and Interpreters

• “Compilation”

– Translation of a program written in a source

language into a semantically equivalent

program written in a target language

Compiler

Error messages

Source

Program

Target

Program

Input

Output

Compilers and Interpreters

(cont’d)

Interpreter

Source

Program

Input

Output

Error messages

• “Interpretation”

– Performing the operations implied by the

source program

The Analysis-Synthesis Model of

Compilation

• There are two parts to compilation:

– Analysis determines the operations implied by

the source program which are recorded in a tree

structure

– Synthesis takes the tree structure and translates

the operations therein into the target program

Other Tools that Use the

Analysis-Synthesis Model

• Editors (syntax highlighting)

• Pretty printers (e.g. doxygen)

• Static checkers (e.g. lint and splint)

• Interpreters

• Text formatters (e.g. TeX and LaTeX)

• Silicon compilers (e.g. VHDL)

• Query interpreters/compilers (Databases)

Preprocessors, Compilers,

Assemblers, and Linkers

Preprocessor

Compiler

Assembler

Linker

Skeletal Source Program

Source Program

Target Assembly Program

Relocatable Object Code

Absolute Machine Code

Libraries and

Relocatable Object Files

Try for example:
gcc -v myprog.c

The Phases of a Compiler
Phase Output Sample

Programmer Source string A=B+C;

Scanner (performs lexical
analysis)

Token string ‘A’, ‘=’, ‘B’, ‘+’, ‘C’, ‘;’

And symbol table for identifiers

Parser (performs syntax analysis
based on the grammar of the

programming language)

Parse tree or abstract syntax tree ;

|

=

/ \

A +

/ \

B C

Semantic analyzer (type

checking, etc)

Parse tree or abstract syntax tree

Intermediate code generator Three-address code, quads, or

RTL

int2fp B t1

+ t1 C t2

:= t2 A

Optimizer Three-address code, quads, or

RTL

int2fp B t1

+ t1 #2.3 A

Code generator Assembly code MOVF #2.3,r1

ADDF2 r1,r2

MOVF r2,A

Peephole optimizer Assembly code ADDF2 #2.3,r2

MOVF r2,A

The Grouping of Phases

• Compiler front and back ends:

– Analysis (machine independent front end)

– Synthesis (machine dependent back end)

• Passes

– A collection of phases may be repeated only once
(single pass) or multiple times (multi pass)

– Single pass: usually requires everything to be defined
before being used in source program

– Multi pass: compiler may have to keep entire program
representation in memory

Compiler-Construction Tools

• Software development tools are available to

implement one or more compiler phases

– Scanner generators

– Parser generators

– Syntax-directed translation engines

– Automatic code generators

– Data-flow engines

Outline

• Ch. 1: Introduction

• Ch. 2: A simple One-Pass Compiler for the JVM

• Ch. 3: Lexical Analysis and Lex/Flex

• Ch. 4: Syntax Analysis and Yacc/Bison

• Ch. 5: Syntax-Directed Translation

• Ch. 6: Type Checking

• Ch. 7: Run-Time Environments

• Ch. 8: Intermediate Code Generation

• Ch. 9: Code Generation

• Ch.10: Code Optimization

